Refined Chung-Feller theorems for lattice paths
نویسندگان
چکیده
In this paper we prove a strengthening of the classical Chung-Feller theorem and a weighted version for Schröder paths. Both results are proved by refined bijections which are developed from the study of Taylor expansions of generating functions. By the same technique, we establish variants of the bijections for Catalan paths of order d and certain families of Motzkin paths. Moreover, we obtain a neat formula for enumerating Schröder paths with flaws. MSC2000: 05A15
منابع مشابه
Generalizations of Chung-feller Theorems
In this paper, we develop a method to find Chung-Feller extensions for three kinds of different rooted lattice paths and prove Chung-Feller theorems for such lattice paths. In particular, we compute a generating function S(z) of a sequence formed by rooted lattice paths. We give combinatorial interpretations to the function of Chung-Feller type S(z)−yS(yz) 1−y for the generating function S(z). ...
متن کاملGeneralizations of The Chung-Feller Theorem
The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length n with flaws m is the n-th Catalan number and independent on m. L. Shapiro [7] found the Chung-Feller properties for the Motzkin paths. In this paper, we find the connections between these two Chung-Feller theorems. We focus on the weighted versions of three classes of lattice paths and give the generalizati...
متن کاملGeneralizations of The Chung-Feller Theorem II
The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length n with m flaws is the n-th Catalan number and independent on m. L. Shapiro [9] found the Chung-Feller properties for the Motzkin paths. Mohanty’s book [5] devotes an entire section to exploring Chung-Feller theorem. Many Chung-Feller theorems are consequences of the results in [5]. In this paper, we consider...
متن کاملStrings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property
This paper deals with the enumeration of Grand-Dyck paths according to the statistic “number of occurrences of τ” for every string τ of length 3, taking into account the number of flaws of the path. Consequently, some new refinements of the Chung-Feller theorem are obtained.
متن کاملChung-Feller Property in View of Generating Functions
The classical Chung-Feller Theorem offers an elegant perspective for enumerating the Catalan number cn = 1 n+1 ( 2n n ) . One of the various proofs is by the uniformpartition method. The method shows that the set of the free Dyck n-paths, which have ( 2n n ) in total, is uniformly partitioned into n + 1 blocks, and the ordinary Dyck n-paths form one of these blocks; therefore the cardinality of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 112 شماره
صفحات -
تاریخ انتشار 2005